English comments and notes.
I found some more possible improvements for performance... git-svn-id: svn://pulkomandy.tk/GrafX2/trunk@1142 416bcca6-2ee7-4201-b75f-2eb2f807beb1
This commit is contained in:
parent
7efea41231
commit
db8111373d
267
op_c.c
267
op_c.c
@ -28,6 +28,8 @@
|
||||
#include "op_c.h"
|
||||
#include "errors.h"
|
||||
|
||||
/// Convert RGB to HSL.
|
||||
/// Both input and output are in the 0..255 range to use in the palette screen
|
||||
void RGB_to_HSL(int r,int g,int b,byte * hr,byte * sr,byte* lr)
|
||||
{
|
||||
double rd,gd,bd,h,s,l,max,min;
|
||||
@ -37,9 +39,6 @@ void RGB_to_HSL(int r,int g,int b,byte * hr,byte * sr,byte* lr)
|
||||
gd = g / 255.0;
|
||||
bd = b / 255.0;
|
||||
|
||||
// compute L
|
||||
// l=(rd*0.30)+(gd*0.59)+(bd*0.11);
|
||||
|
||||
// compute maximum of rd,gd,bd
|
||||
if (rd>=gd)
|
||||
{
|
||||
@ -97,6 +96,8 @@ void RGB_to_HSL(int r,int g,int b,byte * hr,byte * sr,byte* lr)
|
||||
*sr = (s*255.0);
|
||||
}
|
||||
|
||||
/// Convert HSL back to RGB
|
||||
/// Input and output are all in range 0..255
|
||||
void HSL_to_RGB(byte h,byte s,byte l, byte* r, byte* g, byte* b)
|
||||
{
|
||||
float rf =0 ,gf = 0,bf = 0;
|
||||
@ -162,10 +163,14 @@ void HSL_to_RGB(byte h,byte s,byte l, byte* r, byte* g, byte* b)
|
||||
*b = bf * (255);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////// Méthodes de gestion des tables de conversion //
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Conversion table handlers
|
||||
// The conversion table is built after a run of the median cut algorithm and is
|
||||
// used to find the best color index for a given (RGB) color. GIMP avoids
|
||||
// creating the whole table and only create parts of it when they are actually
|
||||
// needed. This may or may not be faster
|
||||
|
||||
/// Creates a new conversion table
|
||||
/// params: bumber of bits for R, G, B (precision)
|
||||
T_Conversion_table * CT_new(int nbb_r,int nbb_g,int nbb_b)
|
||||
{
|
||||
T_Conversion_table * n;
|
||||
@ -174,31 +179,34 @@ T_Conversion_table * CT_new(int nbb_r,int nbb_g,int nbb_b)
|
||||
n=(T_Conversion_table *)malloc(sizeof(T_Conversion_table));
|
||||
if (n!=NULL)
|
||||
{
|
||||
// On recopie les paramŠtres demand‚s
|
||||
// Copy the passed parameters
|
||||
n->nbb_r=nbb_r;
|
||||
n->nbb_g=nbb_g;
|
||||
n->nbb_b=nbb_b;
|
||||
|
||||
// On calcule les autres
|
||||
// Calculate the others
|
||||
|
||||
// Value ranges (max value actually)
|
||||
n->rng_r=(1<<nbb_r);
|
||||
n->rng_g=(1<<nbb_g);
|
||||
n->rng_b=(1<<nbb_b);
|
||||
|
||||
// Shifts
|
||||
n->dec_r=nbb_g+nbb_b;
|
||||
n->dec_g=nbb_b;
|
||||
n->dec_b=0;
|
||||
|
||||
// Reductions (how many bits are lost)
|
||||
n->red_r=8-nbb_r;
|
||||
n->red_g=8-nbb_g;
|
||||
n->red_b=8-nbb_b;
|
||||
|
||||
// On tente d'allouer la table
|
||||
// Allocate the table
|
||||
size=(n->rng_r)*(n->rng_g)*(n->rng_b);
|
||||
n->table=(byte *)malloc(size);
|
||||
if (n->table!=NULL)
|
||||
// C'est bon!
|
||||
memset(n->table,0,size); // Inutile, mais plus propre
|
||||
else
|
||||
n->table=(byte *)malloc(size, 1);
|
||||
if (n->table == NULL)
|
||||
{
|
||||
// Table impossible … allouer
|
||||
// Not enough memory
|
||||
free(n);
|
||||
n=NULL;
|
||||
}
|
||||
@ -207,27 +215,33 @@ T_Conversion_table * CT_new(int nbb_r,int nbb_g,int nbb_b)
|
||||
return n;
|
||||
}
|
||||
|
||||
|
||||
/// Delete a conversion table and release its memory
|
||||
void CT_delete(T_Conversion_table * t)
|
||||
{
|
||||
free(t->table);
|
||||
free(t);
|
||||
}
|
||||
|
||||
|
||||
/// Get the best palette index for an (R, G, B) color
|
||||
byte CT_get(T_Conversion_table * t,int r,int g,int b)
|
||||
{
|
||||
int index;
|
||||
|
||||
// On réduit le nombre de bits par couleur
|
||||
// Reduce the number of bits to the table precision
|
||||
r=(r>>t->red_r);
|
||||
g=(g>>t->red_g);
|
||||
b=(b>>t->red_b);
|
||||
|
||||
// On recherche la couleur la plus proche dans la table de conversion
|
||||
// Find the nearest color
|
||||
index=(r<<t->dec_r) | (g<<t->dec_g) | (b<<t->dec_b);
|
||||
|
||||
return t->table[index];
|
||||
}
|
||||
|
||||
|
||||
/// Set an entry of the table, index (RGB), value i
|
||||
void CT_set(T_Conversion_table * t,int r,int g,int b,byte i)
|
||||
{
|
||||
int index;
|
||||
@ -237,19 +251,21 @@ void CT_set(T_Conversion_table * t,int r,int g,int b,byte i)
|
||||
}
|
||||
|
||||
|
||||
// Handlers for the occurences tables
|
||||
// This table is used to count the occurence of an (RGB) pixel value in the
|
||||
// source 24bit image. These count are then used by the median cut algorithm to
|
||||
// decide which cluster to split.
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
/////////////////////////////// M‚thodes de gestion des tables d'occurence //
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Initialize an occurence table
|
||||
void OT_init(T_Occurrence_table * t)
|
||||
{
|
||||
int size;
|
||||
|
||||
size=(t->rng_r)*(t->rng_g)*(t->rng_b)*sizeof(int);
|
||||
memset(t->table,0,size); // On initialise … 0
|
||||
memset(t->table,0,size); // Set it to 0
|
||||
}
|
||||
|
||||
/// Allocate an occurence table for given number of bits
|
||||
T_Occurrence_table * OT_new(int nbb_r,int nbb_g,int nbb_b)
|
||||
{
|
||||
T_Occurrence_table * n;
|
||||
@ -258,12 +274,12 @@ T_Occurrence_table * OT_new(int nbb_r,int nbb_g,int nbb_b)
|
||||
n=(T_Occurrence_table *)malloc(sizeof(T_Occurrence_table));
|
||||
if (n!=0)
|
||||
{
|
||||
// On recopie les paramŠtres demand‚s
|
||||
// Copy passed parameters
|
||||
n->nbb_r=nbb_r;
|
||||
n->nbb_g=nbb_g;
|
||||
n->nbb_b=nbb_b;
|
||||
|
||||
// On calcule les autres
|
||||
// Compute others
|
||||
n->rng_r=(1<<nbb_r);
|
||||
n->rng_g=(1<<nbb_g);
|
||||
n->rng_b=(1<<nbb_b);
|
||||
@ -274,15 +290,12 @@ T_Occurrence_table * OT_new(int nbb_r,int nbb_g,int nbb_b)
|
||||
n->red_g=8-nbb_g;
|
||||
n->red_b=8-nbb_b;
|
||||
|
||||
// On tente d'allouer la table
|
||||
// Allocate the table
|
||||
size=(n->rng_r)*(n->rng_g)*(n->rng_b)*sizeof(int);
|
||||
n->table=(int *)malloc(size);
|
||||
if (n->table!=0)
|
||||
// C'est bon! On initialise … 0
|
||||
OT_init(n);
|
||||
else
|
||||
n->table=(int *)calloc(size, 1);
|
||||
if (n->table == NULL)
|
||||
{
|
||||
// Table impossible … allouer
|
||||
// Not enough memory !
|
||||
free(n);
|
||||
n=0;
|
||||
}
|
||||
@ -291,31 +304,42 @@ T_Occurrence_table * OT_new(int nbb_r,int nbb_g,int nbb_b)
|
||||
return n;
|
||||
}
|
||||
|
||||
|
||||
/// Delete a table and free the memory
|
||||
void OT_delete(T_Occurrence_table * t)
|
||||
{
|
||||
free(t->table);
|
||||
free(t);
|
||||
}
|
||||
|
||||
|
||||
/// Get number of occurences for a given color
|
||||
int OT_get(T_Occurrence_table * t, int r, int g, int b)
|
||||
{
|
||||
int index;
|
||||
|
||||
// Drop bits as needed
|
||||
index=(r<<t->dec_r) | (g<<t->dec_g) | (b<<t->dec_b);
|
||||
return t->table[index];
|
||||
}
|
||||
|
||||
|
||||
/// Add 1 to the count for a color
|
||||
void OT_inc(T_Occurrence_table * t,int r,int g,int b)
|
||||
{
|
||||
int index;
|
||||
|
||||
// Drop bits as needed
|
||||
r=(r>>t->red_r);
|
||||
g=(g>>t->red_g);
|
||||
b=(b>>t->red_b);
|
||||
// Compute the address
|
||||
index=(r<<t->dec_r) | (g<<t->dec_g) | (b<<t->dec_b);
|
||||
t->table[index]++;
|
||||
}
|
||||
|
||||
|
||||
/// Count the use of each color in a 24bit picture and fill in the table
|
||||
void OT_count_occurrences(T_Occurrence_table* t, T_Bitmap24B image, int size)
|
||||
{
|
||||
T_Bitmap24B ptr;
|
||||
@ -325,11 +349,13 @@ void OT_count_occurrences(T_Occurrence_table* t, T_Bitmap24B image, int size)
|
||||
OT_inc(t, ptr->R, ptr->G, ptr->B);
|
||||
}
|
||||
|
||||
|
||||
/// Count the total number of pixels in an occurence table
|
||||
int OT_count_colors(T_Occurrence_table * t)
|
||||
{
|
||||
int val; // Valeur de retour
|
||||
int nb; // Nombre de couleurs … tester
|
||||
int i; // Compteur de couleurs test‚es
|
||||
int val; // Computed return value
|
||||
int nb; // Number of colors to test
|
||||
int i; // Loop index
|
||||
|
||||
val = 0;
|
||||
nb=(t->rng_r)*(t->rng_g)*(t->rng_b);
|
||||
@ -341,25 +367,41 @@ int OT_count_colors(T_Occurrence_table * t)
|
||||
}
|
||||
|
||||
|
||||
// Cluster management
|
||||
// Clusters are boxes in the RGB spaces, defined by 6 corner coordinates :
|
||||
// Rmax, Rmin, Vmax (or Gmax), Vmin, Rmax, Rmin
|
||||
// The median cut algorithm start with a single cluster covering the whole
|
||||
// colorspace then split it in two smaller clusters on the longest axis until
|
||||
// there are 256 non-empty clusters (with some tricks if the original image
|
||||
// actually has less than 256 colors)
|
||||
// Each cluster also store the number of pixels that are inside and the
|
||||
// rmin, rmax, vmin, vmax, bmin, bmax values are the first/last values that
|
||||
// actually are used by a pixel in the cluster
|
||||
// When you split a big cluster there may be some space between the splitting
|
||||
// plane and the first pixel actually in a cluster
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////// M‚thodes de gestion des clusters //
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/// Pack a cluster, ie compute its {r,v,b}{min,max} values
|
||||
void Cluster_pack(T_Cluster * c,T_Occurrence_table * to)
|
||||
{
|
||||
int rmin,rmax,vmin,vmax,bmin,bmax;
|
||||
int r,g,b;
|
||||
|
||||
// On cherche les mins et les maxs de chaque composante sur la couverture
|
||||
// Find min. and max. values actually used for each component in this cluster
|
||||
|
||||
// int nbocc;
|
||||
|
||||
// On prédécale tout pour éviter de faire trop de bazar en se forçant à utiliser OT_get, plus rapide
|
||||
// Pre-shift everything to avoid using OT_Get and be faster. This will only
|
||||
// work if the occurence table actually has full precision, that is a
|
||||
// 256^3*sizeof(int) = 64MB table. If your computer has less free ram and
|
||||
// malloc fails, this will not work at all !
|
||||
// GIMP use only 6 bits for G and B components in this table.
|
||||
rmin=c->rmax <<16; rmax=c->rmin << 16;
|
||||
vmin=c->vmax << 8; vmax=c->vmin << 8;
|
||||
bmin=c->bmax; bmax=c->bmin;
|
||||
c->occurences=0;
|
||||
|
||||
// Unoptimized code kept here for documentation purpose because the optimized
|
||||
// one is unreadable : run over the whole cluster and find the min and max,
|
||||
// and count the occurences at the same time.
|
||||
/*
|
||||
for (r=c->rmin<<16;r<=c->rmax<<16;r+=1<<16)
|
||||
for (g=c->vmin<<8;g<=c->vmax<<8;g+=1<<8)
|
||||
@ -379,9 +421,9 @@ void Cluster_pack(T_Cluster * c,T_Occurrence_table * to)
|
||||
}
|
||||
*/
|
||||
|
||||
// On recherche le minimum et le maximum en parcourant le cluster selon chaque composante,
|
||||
// ça évite des accès mémoires inutiles, de plus chaque boucle est plus petite que la
|
||||
// précédente puisqu'on connait une borne supplémentaire
|
||||
// Optimized version : find the extremums one at a time, so we can reduce the
|
||||
// area to seek for the next one. Start at the edges of the cluster and go to
|
||||
// the center until we find a pixel.
|
||||
|
||||
for(r=c->rmin<<16;r<=c->rmax<<16;r+=1<<16)
|
||||
for(g=c->vmin<<8;g<=c->vmax<<8;g+=1<<8)
|
||||
@ -449,7 +491,8 @@ BMAX:
|
||||
}
|
||||
}
|
||||
ENDCRUSH:
|
||||
// Il faut quand même parcourir la partie utile du cluster, pour savoir combien il y a d'occurences
|
||||
// We still need to seek the internal part of the cluster to count pixels
|
||||
// inside it
|
||||
for(r=rmin;r<=rmax;r+=1<<16)
|
||||
for(g=vmin;g<=vmax;g+=1<<8)
|
||||
for(b=bmin;b<=bmax;b++)
|
||||
@ -457,11 +500,14 @@ ENDCRUSH:
|
||||
c->occurences+=to->table[r + g + b]; // OT_get
|
||||
}
|
||||
|
||||
// Unshift the values and put them in the cluster info
|
||||
c->rmin=rmin>>16; c->rmax=rmax>>16;
|
||||
c->vmin=vmin>>8; c->vmax=vmax>>8;
|
||||
c->bmin=bmin; c->bmax=bmax;
|
||||
|
||||
// On regarde la composante qui a la variation la plus grande
|
||||
// Find the longest axis to know which way to split the cluster
|
||||
// This multiplications are supposed to improve the result, but may or may not
|
||||
// work, actually.
|
||||
r=(c->rmax-c->rmin)*299;
|
||||
g=(c->vmax-c->vmin)*587;
|
||||
b=(c->bmax-c->bmin)*114;
|
||||
@ -496,6 +542,9 @@ ENDCRUSH:
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Split a cluster on its longest axis.
|
||||
/// c = source cluster, c1, c2 = output after split
|
||||
void Cluster_split(T_Cluster * c, T_Cluster * c1, T_Cluster * c2, int hue,
|
||||
T_Occurrence_table * to)
|
||||
{
|
||||
@ -503,10 +552,12 @@ void Cluster_split(T_Cluster * c, T_Cluster * c1, T_Cluster * c2, int hue,
|
||||
int cumul;
|
||||
int r, g, b;
|
||||
|
||||
// Split criterion: each of the cluster will have the same number of pixels
|
||||
limit = c->occurences / 2;
|
||||
cumul = 0;
|
||||
if (hue == 0)
|
||||
if (hue == 0) // split on red
|
||||
{
|
||||
// Run over the cluster until we reach the requested number of pixels
|
||||
for (r = c->rmin<<16; r<=c->rmax<<16; r+=1<<16)
|
||||
{
|
||||
for (g = c->vmin<<8; g<=c->vmax<<8; g+=1<<8)
|
||||
@ -527,9 +578,11 @@ void Cluster_split(T_Cluster * c, T_Cluster * c1, T_Cluster * c2, int hue,
|
||||
r>>=16;
|
||||
g>>=8;
|
||||
|
||||
// We tried to split on red, but found half of the pixels with r = rmin
|
||||
// so we enforce some split to happen anyway, instead of creating an empty
|
||||
// c2 and c1 == c
|
||||
if (r==c->rmin)
|
||||
r++;
|
||||
// R est la valeur de d‚but du 2nd cluster
|
||||
|
||||
c1->Rmin=c->Rmin; c1->Rmax=r-1;
|
||||
c1->rmin=c->rmin; c1->rmax=r-1;
|
||||
@ -546,7 +599,7 @@ void Cluster_split(T_Cluster * c, T_Cluster * c1, T_Cluster * c2, int hue,
|
||||
c2->bmin=c->bmin; c2->bmax=c->bmax;
|
||||
}
|
||||
else
|
||||
if (hue==1)
|
||||
if (hue==1) // split on green
|
||||
{
|
||||
|
||||
for (g=c->vmin<<8;g<=c->vmax<<8;g+=1<<8)
|
||||
@ -570,7 +623,6 @@ void Cluster_split(T_Cluster * c, T_Cluster * c1, T_Cluster * c2, int hue,
|
||||
|
||||
if (g==c->vmin)
|
||||
g++;
|
||||
// G est la valeur de d‚but du 2nd cluster
|
||||
|
||||
c1->Rmin=c->Rmin; c1->Rmax=c->Rmax;
|
||||
c1->rmin=c->rmin; c1->rmax=c->rmax;
|
||||
@ -586,7 +638,7 @@ void Cluster_split(T_Cluster * c, T_Cluster * c1, T_Cluster * c2, int hue,
|
||||
c2->Bmin=c->Bmin; c2->Bmax=c->Bmax;
|
||||
c2->bmin=c->bmin; c2->bmax=c->bmax;
|
||||
}
|
||||
else
|
||||
else // split on blue
|
||||
{
|
||||
|
||||
for (b=c->bmin;b<=c->bmax;b++)
|
||||
@ -610,7 +662,6 @@ void Cluster_split(T_Cluster * c, T_Cluster * c1, T_Cluster * c2, int hue,
|
||||
|
||||
if (b==c->bmin)
|
||||
b++;
|
||||
// B est la valeur de d‚but du 2nd cluster
|
||||
|
||||
c1->Rmin=c->Rmin; c1->Rmax=c->Rmax;
|
||||
c1->rmin=c->rmin; c1->rmax=c->rmax;
|
||||
@ -628,6 +679,8 @@ void Cluster_split(T_Cluster * c, T_Cluster * c1, T_Cluster * c2, int hue,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Compute the mean R, G, B (for palette generation) and H, L (for palette sorting)
|
||||
void Cluster_compute_hue(T_Cluster * c,T_Occurrence_table * to)
|
||||
{
|
||||
int cumul_r,cumul_g,cumul_b;
|
||||
@ -657,10 +710,11 @@ void Cluster_compute_hue(T_Cluster * c,T_Occurrence_table * to)
|
||||
}
|
||||
|
||||
|
||||
// Cluster set management
|
||||
// A set of clusters in handled as a list, the median cut algorithm pops a
|
||||
// cluster from the list, split it, and pushes back the two splitted clusters
|
||||
// until the lit grows to 256 items
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////// M‚thodes de gestion des ensembles de clusters //
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Debug helper : check if a cluster set has the right count value
|
||||
/*
|
||||
@ -679,6 +733,7 @@ void CS_Check(T_Cluster_set* cs)
|
||||
*/
|
||||
|
||||
/// Setup the first cluster before we start the operations
|
||||
/// This one covers the full palette range
|
||||
void CS_Init(T_Cluster_set * cs, T_Occurrence_table * to)
|
||||
{
|
||||
cs->clusters->Rmin = cs->clusters->rmin = 0;
|
||||
@ -700,25 +755,23 @@ T_Cluster_set * CS_New(int nbmax, T_Occurrence_table * to)
|
||||
n=(T_Cluster_set *)malloc(sizeof(T_Cluster_set));
|
||||
if (n != NULL)
|
||||
{
|
||||
// On recopie les paramŠtres demand‚s
|
||||
// Copy requested params
|
||||
n->nb_max = OT_count_colors(to);
|
||||
|
||||
// On vient de compter le nombre de couleurs existantes, s'il est plus grand
|
||||
// que 256 on limite à 256
|
||||
// (nombre de couleurs voulu au final)
|
||||
// If the number of colors asked is > 256, we ceil it because we know we
|
||||
// don't want more
|
||||
if (n->nb_max > nbmax)
|
||||
{
|
||||
n->nb_max = nbmax;
|
||||
}
|
||||
|
||||
// On tente d'allouer le premier cluster
|
||||
// Allocate the first cluster
|
||||
n->clusters=(T_Cluster *)malloc(sizeof(T_Cluster));
|
||||
if (n->clusters != NULL)
|
||||
// C'est bon! On initialise
|
||||
CS_Init(n, to);
|
||||
else
|
||||
{
|
||||
// Table impossible … allouer
|
||||
// No memory free ! Sorry !
|
||||
free(n);
|
||||
n = NULL;
|
||||
}
|
||||
@ -740,12 +793,18 @@ void CS_Delete(T_Cluster_set * cs)
|
||||
free(cs);
|
||||
}
|
||||
|
||||
|
||||
/// Pop a cluster from the cluster list
|
||||
void CS_Get(T_Cluster_set * cs, T_Cluster * c)
|
||||
{
|
||||
T_Cluster* current = cs->clusters;
|
||||
T_Cluster* prev = NULL;
|
||||
|
||||
// Search a cluster with at least 2 distinct colors so we can split it
|
||||
// Clusters are sorted by number of occurences, so a cluster may end up
|
||||
// with a lot of pixelsand on top of the list, but only one color. We can't
|
||||
// split it in that case. It should probably be stored on a list of unsplittable
|
||||
// clusters to avoid running on it again on each iteration.
|
||||
do
|
||||
{
|
||||
if ( (current->rmin < current->rmax) ||
|
||||
@ -771,12 +830,14 @@ void CS_Get(T_Cluster_set * cs, T_Cluster * c)
|
||||
current = NULL;
|
||||
}
|
||||
|
||||
|
||||
/// Push a cluster in the list
|
||||
void CS_Set(T_Cluster_set * cs,T_Cluster * c)
|
||||
{
|
||||
T_Cluster* current = cs->clusters;
|
||||
T_Cluster* prev = NULL;
|
||||
|
||||
// Search the first cluster that is smaller than ours
|
||||
// Search the first cluster that is smaller than ours (less pixels)
|
||||
while (current && current->occurences > c->occurences)
|
||||
{
|
||||
prev = current;
|
||||
@ -795,41 +856,44 @@ void CS_Set(T_Cluster_set * cs,T_Cluster * c)
|
||||
cs->nb++;
|
||||
}
|
||||
|
||||
// Détermination de la meilleure palette en utilisant l'algo Median Cut :
|
||||
// 1) On considère l'espace (R,G,B) comme 1 boîte
|
||||
// 2) On cherche les extrêmes de la boîte en (R,G,B)
|
||||
// 3) On trie les pixels de l'image selon l'axe le plus long parmi (R,G,B)
|
||||
// 4) On coupe la boîte en deux au milieu, et on compacte pour que chaque bord
|
||||
// corresponde bien à un pixel extreme
|
||||
// 5) On recommence à couper selon le plus grand axe toutes boîtes confondues
|
||||
// 6) On s'arrête quand on a le nombre de couleurs voulu
|
||||
/// This is the main median cut algorithm and the function actually called to
|
||||
/// reduce the palette. We get the number of pixels for each collor in the
|
||||
/// occurence table and generate the cluster set from it.
|
||||
// 1) RGB space is a big box
|
||||
// 2) We seek the pixels with extreme values
|
||||
// 3) We split the box in 2 parts on its longest axis
|
||||
// 4) We pack the 2 resulting boxes again to leave no empty space between the box border and the first pixel
|
||||
// 5) We take the box with the biggest number of pixels inside and we split it again
|
||||
// 6) Iterate until there are 256 boxes. Associate each of them to its middle color
|
||||
void CS_Generate(T_Cluster_set * cs, T_Occurrence_table * to)
|
||||
{
|
||||
T_Cluster current;
|
||||
T_Cluster Nouveau1;
|
||||
T_Cluster Nouveau2;
|
||||
|
||||
// Tant qu'on a moins de 256 clusters
|
||||
// There are less than 256 boxes
|
||||
while (cs->nb<cs->nb_max)
|
||||
{
|
||||
// On récupère le plus grand cluster
|
||||
// Get the biggest one
|
||||
CS_Get(cs,¤t);
|
||||
|
||||
// On le coupe en deux
|
||||
// Split it
|
||||
Cluster_split(¤t, &Nouveau1, &Nouveau2, current.plus_large, to);
|
||||
|
||||
// On compacte ces deux nouveaux (il peut y avoir un espace entre l'endroit
|
||||
// de la coupure et les premiers pixels du cluster)
|
||||
// Pack the 2 new clusters (the split may leave some empty space between the
|
||||
// box border and the first actual pixel)
|
||||
Cluster_pack(&Nouveau1, to);
|
||||
Cluster_pack(&Nouveau2, to);
|
||||
|
||||
// On les remet dans le set
|
||||
// Put them back in the list
|
||||
CS_Set(cs,&Nouveau1);
|
||||
CS_Set(cs,&Nouveau2);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Compute the color associated to each box in the list
|
||||
void CS_Compute_colors(T_Cluster_set * cs, T_Occurrence_table * to)
|
||||
{
|
||||
T_Cluster * c;
|
||||
@ -838,6 +902,11 @@ void CS_Compute_colors(T_Cluster_set * cs, T_Occurrence_table * to)
|
||||
Cluster_compute_hue(c,to);
|
||||
}
|
||||
|
||||
|
||||
// We sort the clusters on two criterions to get a somewhat coherent palette.
|
||||
// TODO : It would be better to do this in one single pass.
|
||||
|
||||
/// Sort the clusters by chrominance value
|
||||
void CS_Sort_by_chrominance(T_Cluster_set * cs)
|
||||
{
|
||||
T_Cluster* nc;
|
||||
@ -866,10 +935,12 @@ void CS_Sort_by_chrominance(T_Cluster_set * cs)
|
||||
prev = NULL;
|
||||
}
|
||||
|
||||
// Put the new list bavk in place
|
||||
// Put the new list back in place
|
||||
cs->clusters = newlist;
|
||||
}
|
||||
|
||||
|
||||
/// Sort the clusters by luminance value
|
||||
void CS_Sort_by_luminance(T_Cluster_set * cs)
|
||||
{
|
||||
T_Cluster* nc;
|
||||
@ -903,6 +974,8 @@ void CS_Sort_by_luminance(T_Cluster_set * cs)
|
||||
cs->clusters = newlist;
|
||||
}
|
||||
|
||||
|
||||
/// Generates the palette from the clusters, then the conversion table to map (RGB) to a palette index
|
||||
void CS_Generate_color_table_and_palette(T_Cluster_set * cs,T_Conversion_table * tc,T_Components * palette)
|
||||
{
|
||||
int index;
|
||||
@ -1028,8 +1101,7 @@ void GS_Generate(T_Gradient_set * ds,T_Cluster_set * cs)
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Compute best palette for given picture.
|
||||
T_Conversion_table * Optimize_palette(T_Bitmap24B image, int size,
|
||||
T_Components * palette, int r, int g, int b)
|
||||
{
|
||||
@ -1038,7 +1110,7 @@ T_Conversion_table * Optimize_palette(T_Bitmap24B image, int size,
|
||||
T_Cluster_set * cs;
|
||||
T_Gradient_set * ds;
|
||||
|
||||
// Création des éléments nécessaires au calcul de palette optimisée:
|
||||
// Allocate all the elements
|
||||
to = 0; tc = 0; cs = 0; ds = 0;
|
||||
|
||||
to = OT_new(r, g, b);
|
||||
@ -1052,7 +1124,7 @@ T_Conversion_table * Optimize_palette(T_Bitmap24B image, int size,
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Première étape : on compte les pixels de chaque couleur pour pouvoir trier là dessus
|
||||
// Count pixels for each color
|
||||
OT_count_occurrences(to, image, size);
|
||||
|
||||
cs = CS_New(256, to);
|
||||
@ -1063,13 +1135,13 @@ T_Conversion_table * Optimize_palette(T_Bitmap24B image, int size,
|
||||
return 0;
|
||||
}
|
||||
//CS_Check(cs);
|
||||
// C'est bon, on a pu tout allouer
|
||||
// Ok, everything was allocated
|
||||
|
||||
// On génère les clusters (avec l'algo du median cut)
|
||||
// Generate the cluster set with median cut algorithm
|
||||
CS_Generate(cs, to);
|
||||
//CS_Check(cs);
|
||||
|
||||
// On calcule la teinte de chaque pixel (Luminance et chrominance)
|
||||
// Compute the color data for each cluster (palette entry + HL)
|
||||
CS_Compute_colors(cs, to);
|
||||
//CS_Check(cs);
|
||||
|
||||
@ -1079,15 +1151,13 @@ T_Conversion_table * Optimize_palette(T_Bitmap24B image, int size,
|
||||
GS_Generate(ds, cs);
|
||||
GS_Delete(ds);
|
||||
}
|
||||
// Enfin on trie les clusters (donc les couleurs de la palette) dans un ordre
|
||||
// sympa : par couleur, et par luminosité pour chaque couleur
|
||||
// Sort the clusters on L and H to get a nice palette
|
||||
CS_Sort_by_luminance(cs);
|
||||
//CS_Check(cs);
|
||||
CS_Sort_by_chrominance(cs);
|
||||
//CS_Check(cs);
|
||||
|
||||
// Enfin on génère la palette et la table de correspondance entre chaque
|
||||
// couleur 24b et sa couleur palette associée.
|
||||
// And finally generate the conversion table to map RGB > pal. index
|
||||
CS_Generate_color_table_and_palette(cs, tc, palette);
|
||||
//CS_Check(cs);
|
||||
|
||||
@ -1096,6 +1166,8 @@ T_Conversion_table * Optimize_palette(T_Bitmap24B image, int size,
|
||||
return tc;
|
||||
}
|
||||
|
||||
|
||||
/// Change a value with proper ceiling and flooring
|
||||
int Modified_value(int value,int modif)
|
||||
{
|
||||
value+=modif;
|
||||
@ -1110,10 +1182,11 @@ int Modified_value(int value,int modif)
|
||||
return value;
|
||||
}
|
||||
|
||||
|
||||
/// Convert a 24b image to 256 colors (with a given palette and conversion table)
|
||||
/// This destroys the 24b picture !
|
||||
/// Uses floyd steinberg dithering.
|
||||
void Convert_24b_bitmap_to_256_Floyd_Steinberg(T_Bitmap256 dest,T_Bitmap24B source,int width,int height,T_Components * palette,T_Conversion_table * tc)
|
||||
// Cette fonction dégrade au fur et à mesure le bitmap source, donc soit on ne
|
||||
// s'en ressert pas, soit on passe à la fonction une copie de travail du
|
||||
// bitmap original.
|
||||
{
|
||||
T_Bitmap24B current;
|
||||
T_Bitmap24B c_plus1;
|
||||
@ -1205,6 +1278,8 @@ void Convert_24b_bitmap_to_256_Floyd_Steinberg(T_Bitmap256 dest,T_Bitmap24B sour
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Converts from 24b to 256c without dithering, using given conversion table
|
||||
void Convert_24b_bitmap_to_256_nearest_neighbor(T_Bitmap256 dest,
|
||||
T_Bitmap24B source, int width, int height, __attribute__((unused)) T_Components * palette,
|
||||
T_Conversion_table * tc)
|
||||
@ -1241,6 +1316,8 @@ void Convert_24b_bitmap_to_256_nearest_neighbor(T_Bitmap256 dest,
|
||||
}
|
||||
|
||||
|
||||
// These are the allowed precisions for all the tables.
|
||||
// For some of them only the first one may work because of ugly optimizations
|
||||
static const byte precision_24b[]=
|
||||
{
|
||||
8,8,8,
|
||||
@ -1257,11 +1334,7 @@ static const byte precision_24b[]=
|
||||
3,3,2};
|
||||
|
||||
|
||||
// Convertie avec le plus de précision possible une image 24b en 256c
|
||||
// Renvoie s'il y a eu une erreur ou pas..
|
||||
|
||||
// Cette fonction utilise l'algorithme "median cut" (Optimize_palette) pour trouver la palette, et diffuse les erreurs avec floyd-steinberg.
|
||||
|
||||
// Give this one a 24b source, get back the 256c bitmap and its palette
|
||||
int Convert_24b_bitmap_to_256(T_Bitmap256 dest,T_Bitmap24B source,int width,int height,T_Components * palette)
|
||||
{
|
||||
T_Conversion_table * table; // table de conversion
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user