Adrien Destugues f4bfaeca89 Add scripts to color-reduce pictures with constraints
Scripts for various Thomson machines, Oric and ZX. All the hard work of
Samuel Devulder, with extensive research on color palette reduction
algorithms, lots of testing, research and debugging.

Thanks a lot!
2017-03-21 21:48:39 +01:00

221 lines
5.8 KiB
Lua

-- bayer4_mo5.lua : converts an image into TO7/70-MO5
-- mode for thomson machines (MO6,TO8,TO9,TO9+)
-- using special bayer matrix that fits well with
-- color clashes.
--
-- Version: 02-jan-2017
--
-- Copyright 2016-2017 by Samuel Devulder
--
-- This program is free software; you can redistribute
-- it and/or modify it under the terms of the GNU
-- General Public License as published by the Free
-- Software Foundation; version 2 of the License.
-- See <http://www.gnu.org/licenses/>
-- get screen size
local screen_w, screen_h = getpicturesize()
run("lib/thomson.lua")
run("lib/color.lua")
run("lib/bayer.lua")
-- Converts thomson coordinates (0-319,0-199) into screen coordinates
local function thom2screen(x,y)
local i,j;
if screen_w/screen_h < 1.6 then
i = x*screen_h/200
j = y*screen_h/200
else
i = x*screen_w/320
j = y*screen_w/320
end
return math.floor(i), math.floor(j)
end
-- return the pixel @(x,y) in normalized linear space (0-1)
-- corresonding to the thomson screen (x in 0-319, y in 0-199)
local function getLinearPixel(x,y)
local x1,y1 = thom2screen(x,y)
local x2,y2 = thom2screen(x+1,y+1)
if x2==x1 then x2=x1+1 end
if y2==y1 then y2=y1+1 end
local p,i,j = Color:new(0,0,0);
for i=x1,x2-1 do
for j=y1,y2-1 do
p:add(getLinearPictureColor(i,j))
end
end
p:div((y2-y1)*(x2-x1)*Color.ONE)
return p
end
local dither = bayer.norm(bayer.double(bayer.double({{1,2},{3,4}})))
local dx,dy=#dither,#dither[1]
-- get thomson palette pixel (linear, 0-1 range)
local linearPalette = {}
function linearPalette.get(i)
local p = linearPalette[i]
if not p then
local pal = thomson.palette(i-1)
local b=math.floor(pal/256)
local g=math.floor(pal/16)%16
local r=pal%16
p = Color:new(thomson.levels.linear[r+1],
thomson.levels.linear[g+1],
thomson.levels.linear[b+1]):div(Color.ONE)
linearPalette[i] = p
end
return p:clone()
end
-- distance between two colors
local distance = {}
function distance.between(c1,c2)
local k = c1..','..c2
local d = distance[k]
if false and not d then
d = linearPalette.get(c1):euclid_dist2(linearPalette.get(c2))
distance[k] = d
end
if not d then
local x = linearPalette.get(c1):sub(linearPalette.get(c2))
local c,c1,c2,c3=1.8,8,11,8
local f = function(c,x) return math.abs(x)*c end
d = f(c1,x.r)^c + f(c2,x.g)^c + f(c3,x.b)^c
distance[k] = d
end
return d
end
-- compute a set of best couples for a given histogram
local best_couple = {n=0}
function best_couple.get(h)
local k = (((h[1]or 0)*8+(h[2]or 0))*8+(h[3]or 0))*8+(h[4]or 0)
.. ',' .. (((h[5]or 0)*8+(h[6]or 0))*8+(h[7]or 0))*8+(h[8]or 0)
local best_found = best_couple[k]
if not best_found then
local dm=1000000
for i=1,15 do
for j=i+1,16 do
local d=0
for p,n in pairs(h) do
local d1,d2=distance.between(p,i),distance.between(p,j)
d = d + n*(d1<d2 and d1 or d2)
if d>dm then break; end
end
if d< dm then dm,best_found=d,{} end
if d<=dm then table.insert(best_found, {c1=i,c2=j}) end
end
end
if best_couple.n>10000 then
-- keep memory usage low
best_couple = {n=0, get=best_couple.get}
end
best_couple[k] = best_found
best_couple.n = best_couple.n+1
end
return best_found
end
-- TO7/70 MO5 mode
thomson.setMO5()
-- convert picture
local err1,err2 = {},{}
local coefs = {0,0.6,0}
for x=-1,320 do
err1[x] = Color:new(0,0,0)
err2[x] = Color:new(0,0,0)
end
for y = 0,199 do
err1,err2 = err2,err1
for x=-1,320 do err2[x]:mul(0) end
for x = 0,319,8 do
local h,q = {},{} -- histo, expected color
for z=x,x+7 do
local d=dither[1+(y%dx)][1+(z%dx)]
local p=getLinearPixel(z,y):add(err1[z])
local c=((p.r>d) and 1 or 0) +
((p.g>d) and 2 or 0) +
((p.b>d) and 4 or 0) + 1 -- theorical color
table.insert(q,c)
h[c] = (h[c] or 0)+1
end
local c1,c2
for c,_ in pairs(h) do
if c1==nil then c1=c
elseif c2==nil then c2=c
else c1=nil; break; end
end
if c1~=nil then
c2 = c2 or c1
else
-- get best possible couples of colors
local best_found = best_couple.get(h)
if #best_found==1 then
c1,c2 = best_found[1].c1,best_found[1].c2
else
-- keep the best of the best depending on max solvable color clashes
function clamp(v) return v<0 and -v or v>1 and v-1 or 0 end
local dm=10000000
for _,couple in ipairs(best_found) do
local d=0
for k=1,8 do
local q=q[k]
local p=distance.between(q,couple.c1)<distance.between(q,couple.c2) and couple.c1 or couple.c2
-- error between expected and best
local e=linearPalette.get(q):sub(linearPalette.get(p)):mul(coefs[1])
local z=getLinearPixel(x+k-1,y+1):add(e)
d = d + clamp(z.r) + clamp(z.g) + clamp(z.b)
end
if d<=dm then dm,c1,c2=d,couple.c1,couple.c2 end
end
end
end
-- thomson.pset(x,y,c1-1)
-- thomson.pset(x,y,-c2)
for k=0,7 do
local z=x+k
local q=q[k+1]
local p=distance.between(q,c1)<distance.between(q,c2) and c1 or c2
local d=linearPalette.get(q):sub(linearPalette.get(p))
err2[z]:add(d:mul(coefs[1]))
thomson.pset(z,y,p==c1 and c1-1 or -c2)
end
end
thomson.info("Converting...",math.floor(y/2),"%")
end
-- refresh screen
setpicturesize(320,200)
thomson.updatescreen()
finalizepicture()
-- save picture
do
local function exist(file)
local f=io.open(file,'rb')
if not f then return false else io.close(f); return true; end
end
local name,path = getfilename()
local mapname = string.gsub(name,"%.%w*$","") .. ".map"
local fullname = path .. '/' .. mapname
local ok = not exist(fullname)
if not ok then
selectbox("Ovr " .. mapname .. "?", "Yes", function() ok = true; end, "No", function() ok = false; end)
end
if ok then thomson.savep(fullname) end
end